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Abstract 
This paper describes our experience in designing and 

building a tool for visualizing the results of the CE-QUAL-
ICM Three-Dimensional Eutrophication Model, as applied to 
water quality in the Chesapeake Bay.  This model outputs a 
highly multidimensional dataset over very many timesteps – 
outstripping the capabilities of the visualization tools available 
to the research team. As part of the Army Engineer Research 
and Development Center (ERDC) Programming Environment 
and Training (PET) project, a special visualization tool was 
developed.  This paper includes discussions on how the 
simulation data are handled efficiently, as well as how the 
issues of usability, flexibility and collaboration are addressed. 

Introduction 
The Chesapeake Bay is the largest and most 

productive estuary in the United States. With a surrounding 
population of about 15 million people, and a valuable place in 
the fishing industry, the Chesapeake Bay is a very important 
natural resource to the region. Population growth and the 
development of agriculture and industry in the area 
surrounding the bay have had a significant impact on this 
ecosystem.  

Scientists at the U. S. Army Engineer Research 
Development Center (ERDC) and the Environmental 
Protection Agency (EPA) have developed a computational 
model to help them understand the effects of pollutants and 
contaminants on the water quality of the Chesapeake Bay.  
This computational system allows scientists to validate and 
predict the water quality in the bay through dozens of 
constituents produced by the simulation.  

Comparing model simulations with existing field 
observations and examining model predictions of future 
environmental scenarios, not only require statistical 
measurements, but more importantly, require visualization.  
Visualization of this model has been through many derivations 
and software packages, both commercial and customized.   

Available commercial visualization tools are 
sometimes tedious to use for handling both the unique data 
format used by the computational model and the particular 
needs of the researchers. Therefore, a custom visualization 

tool was developed to accurately and efficiently deal with the data 
from this model, and to aid in analysis of the data by applying a 
set of advanced visualization algorithms.  Sample results are 
presented in this paper. 

Before the development of this tool scientists used 
standard X-Y line graphs and simple 2-dimensional slices to 
visualize the model prediction.  S.C.I.R.T., the Site 
Characterization Interactive Research Toolkit, [6] was the first 
visualization tool which included 3-dimensional comparisons of 
model predictions and observed data and 3-dimensional views of 
flow/flux vector predictions. 

Requirements 
In developing a user-friendly visualization package 

tailored for the Chesapeake Bay water quality simulation project, 
we found that the user had several needs.  First it needed to handle 
the specific data format of the simulation in a simple and efficient 
manner, and allow the user to apply a variety of visualization 
methods to the data.  This implies the development and 
integration of various data conversion utility programs.  Another 
purpose of this tool was to be able to use it to verify the 
correctness of the computational model if needed.  It should be 
able to view and analyze the computational domain as well as the 
physical domain, and highlight areas that are obvious errors in the 
computation.  Next, the tool needed to be able to easily generate 
graphics for the user to include in various papers and 
presentations.  Since members of the team studying this water 
quality problem were located at various sites across the country, 
the tool needed to support various methods of collaboration.  
Lastly, and most importantly, all of this functionality needed to be 
available to the user in an easily understood interface. 

Numerical Domain 
The numerical domain used in this simulation consists of 

10196 grid cells. The computational model outputs more than 100 
scalar variables, and more than 10 vector variables.  A routine run 
of the computation covers a whole calendar year generating 365 
timesteps, and larger runs have also been made projecting out 10 
and 20 years into the future. 

The cells for the simulation are hexahedral in shape and 
are non-uniform in the x and y dimensions but all cells are 
uniformly spaced in depth.  The grid itself is unstructured in 
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nature, however, the cells are arranged by water columns (i.e. 
neighbors along the z-axis have the same dimensions in x and 
y).  This is to accommodate the water depth variation at each 
location. Coordinates of the grid cell vertices are stored as 
latitudes and longitudes with the depth in meters.  The 
coordinate system was converted into a Cartesian system in 
meters for the convenience of visualization.  Dimensions in X 
and Y are relatively larger than the one in the Z (depth) 
direction.  It thus makes the domain a very thin plate.  In order 
to visualize the data within this domain more meaningfully, 
allowing the user to control the scaling in each direction was 
implemented. 

Scalar constituent values are stored at the cell centers. 
In order to support visualization methods that require a 
continuous scalar field, such as isosurfacing, these values were 
also interpolated to the vertices of each cell.  Vector 
constituent fields are supplied from the model, but their values 
reflect face-centered fluxes entering and exiting the cells.  
This is complicated by the fact that entering and exiting faces 
of a particular cell do not necessarily have the same geometry.  
In order to extract a meaningful vector field on which 
visualization methods could be applied, the first step is to find 
the surface normal of each face. This value is then used to 
decompose each face vector into its components and sum all 
components across the cell to obtain a correct cell-centered 
vector value.  (See Figure 1.) In addition, each face-centered 
value was also normalized by the area of the cell.  Since the 
vector field was based on the flux through an individual cell's 
faces, cells with smaller surface area had vectors with very 
small magnitude relative to the larger cells, and were therefore 
difficult to see.  Normalizing each vector by the area of the 
cell allows the scientist to quickly examine the vector field to 
ensure the correctness of the model. 

 

Figure 1. Cell Centered Vector Field in Physical Domain 

To facilitate visual detection of anomalies in the 
computational model, the user is allowed to toggle the display 
between computational and physical domains.  The display of 
the computational domain is simply a grid with the same 
structure where each cell of the grid is of uniform shape and 
size.  This is desirable since many of the domain cells in the 
rivers of the bay are very tiny and difficult to see in the 
physical domain.  In the computational domain all cells are the 
same size such that errors, even in small river cells, are easy to 
detect (Figure 2). 

Visualization 
We chose to use VTK (the Visualization Toolkit) for 

developing the visual representations for the application. VTK is 
an open-source, freely available software system for computer 
graphics, image processing, and visualization.  It supports 
hundreds of algorithms in visualization and image processing 
fields. 

To facilitate the development of a dynamic and flexible 
visualization application, a general library API called the 
Visualization Generator (VisGen) was developed.  The 
Visualization Generator is a high level component for the 
development of 3D graphics applications. The VisGen library sits 
on top of VTK allowing the user to dynamically build VTK 
graphics pipelines for the production of interactive 3D scientific 
visualizations. The design of the VisGen is such that the 
implementation details of VTK are hidden from the novice user, 
but are available to experienced users for integration into complex 
applications and working environments.  

The API of the VisGen is designed around a message-
passing scheme where messages pass from the application layer to 
the VisGen.  As a result of these messages, the VisGen produces a 
set of graphical objects that are available to the application for 
rendering. Since these messages are simple strings, the API makes 
it very easy to use applications in a collaborative fashion where 
application states are shared between multiple users.  In addition, 
this type of messaging also easily supports rapid prototyping of 
new data, remote visualization, and easy integration with 
components of the user interface.  

  

Figure 2. Computation vs. Physical Domains 

    

Figure 3. Cell-Centered vs. Vertex-Centered Slicing 

The application supports a variety of visualization 
methods applying to scalar and vector data.  These methods 
include slicing planes, isosurfacing, a representation of the 
external shell of the domain, and vector fields (Figures 8, 11).  



 

The user is allowed to view the results of any of these methods 
in both the physical and computational domains.  

In addition, depending on whether the user specifies 
cell-centered or vertex-centered data as input to a particular 
method, an appropriate representation is chosen if possible. 
(See Figure 3.) 

Due to the actual dimensions of the domain (the main 
stem of the bay is about 300 km long and 8-48 km wide) the 
computational grids are relatively coarse.  Consequently, the 
grid sizes may exceed the actual scales of the flow features as 
each cell face can be as big as more than 100 square 
kilometers.  Therefore, the use of streamlines for visualizing 
the vector data may not always return meaningful results.  The 
user can also specify a variety of color maps to apply to the 
representations allowing them more freedom in the final 
appearance of the image.  In addition, there exists the ability to 
do custom titling, and color bars denoting the mapping of data 
to screen color are automatically positioned on the screen as 
each new dataset is added. For example, Figure 9 shows 4 
variables, each with their own color legend and Figure 10 is a 
close-up view near the mouth of the bay. 

We also experimented with building some 
functionality directly in OpenGL.  Figure 4 shows an initial 
version of a tool to display the transport flux data. Though the 
tool provided the functionality of visualizing the vector data, 
the coding itself was far more complicated and laborious 
compared to the similar implementation using VTK. 

 

Figure 4. Initial prototype of vector data visualization 
implemented using OpenGL 

Graphical User Interface (GUI)  
As mentioned above, another important aspect in the 

design of this tool was that of the user interface. We based the 
current version of this interface on a library called the Fast 
Light Toolkit (FLTK) (Figure 6). FLTK provides a very 
comprehensive collection of widget classes, such as buttons 
and sliders, which allows users to build the GUI quickly and 
easily.  It provides a visual programming environment called 
FLUID.  This makes it very easy to design the GUI visually, 
and to integrate effectively with C++ code. 

Unfortunately, there exists no standard way to 
interface the graphics window of a VTK based application 
with FLTK.  A subclass of one of the FLTK windowing 

classes was therefore developed.  It allows developers to include 
the VTK graphics, and track the user's mouse and button events in 
the FLTK GUI windows.  This allows a developer to take the full 
advantage of both packages (Figure 7).  

Because of the high level object-oriented nature of the 
VisGen library that we developed, the user can easily and 
intuitively add and remove different scalar and vector data fields 
for analysis. We call these DataNodes.  Once a DataNode exists, 
the user can then apply any of the visualization methods available 
to this data.  This generates a particular representation depending 
on the method, which is called a VisNode.  The user is free to 
construct any combination of VisNodes and DataNodes to 
compose the image on the screen and can name each VisNode and 
DataNode that might make sense.  

To support the user's need for graphics to use in 
publications and presentations, we included a variety of ways of 
exporting the current graphics window.  First, and most simply, 
we provided the ability to save the current screen as a JPEG 
compressed image.  This works nicely so that saved images can 
be put directly on the web without further conversion.  The tool 
also has the ability to export a file to a high quality renderer called 
RenderMan.  This software can give high quality, production level 
renderings of these images. 

Of particular interest to the user was the ability to 
capture animations.  This was made more difficult by the large 
number of timesteps in the computation, coupled with the large 
number of possible scalar and vector fields.  Our tool incorporates 
this ability to play through animations and to capture QuickTime 
movies directly from the screen, for long numbers of timesteps 
and large resolutions.  We have used the tool to capture 
animations at a resolution of greater than 1280 x 1024 with more 
than 365 timesteps.  Lastly, the ability for the user to capture the 
current visualization as a VRML file capable of being viewed 
through a standard web browser are provided.  This gives the user 
the ability to actually rotate the model of the bay and get a better 
feel for the spatial relationships. 

Collaboration 
The core members of the research team are located in 

multiple buildings at their site and they collaborate with members 
who reside in another state.  We experimented with sharing the 
visualization sessions across the network using existing 
conference software.  On a notebook computer running Windows 
98, NetMeeting was used while SGIMeeting was used for an SGI 
Octane running IRIX 6.5.  This visualization tool can be executed 
on the SGI and is shared between the PCs or SGI workstations 
using existing software.  Since conferencing software provide 
many salient features such as control authorization, which allows 
different participant to take control of the visualization tool, 
collaborated visualization can be achieved seamlessly and 
efficiently.  Figure 5 demonstrated the synchronized collaboration 
of the visualization tool. 



 

 

(a) Windows 98 Environment using NetMeeting Software 

 

(b) SGI IRIX 6.5 Environment using SGIMeeting Software 

Figure 5. Collaboration between Windows PC and SGI 
Workstations 

Summary 
In conclusion, we have developed a comprehensive 

scientific visualization tool to handle the understanding and 
analysis of water quality in the Chesapeake Bay.  Some 
problematic issues in efficiently handling and processing the 
data format from the computational model was resolved 
through this work, and a sophisticated system for dynamically 
generating visualizations of the data have been implemented.  
In addition, the development of the VisGen library allows for 
high-level, flexible control of the VTK graphics pipeline.  
Coupled with an easy-to-use interface to the application, this 
allows the user a lot of control over the graphical 
representation of the data.  Once the user has a representation 
he/she is pleased with, a wide variety of options are provided 
for how this can be used in presentation, or for sharing with 
remote colleagues. 
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Figure 6. Graphical User Interface using FLTK Toolkit 



 

 

Figure 7.  Binding Between FLTK and VTK allows the 
Development of a Comprehensive Package  

 

Figure 9.  Complex Visual Composition of the Domain

 
Figure 8. Combining a Slice Place of Salinity with 

Flow Vectors and an Isosurface of Dissolved Oxygen 

 

Figure 10. Close-up View near the Bay Mouth

 

Figure 11. Slice and Isosurface Presentation 


